Introduction

Monte Carlo simulation of colloidal membrane filtration: Principal issues for modeling

Monte Carlo simulation of colloidal membrane filtration: Principal issues for modeling

CP-2005-18
Monte Carlo simulation of colloidal membrane filtration: Principal issues for modeling

Jim C. Chen, Albert S. Kim

The principal issues involved in developing a Monte Carlo simulation model of colloidal membrane filtration are investigated in this study. An important object for modeling is the physical dynamics responsible for causing particle deposition and accumulation when encountering an open system with continuous outflow. A periodic boundary condition offers a solution to the problem by recirculating continuous flow back through the system. Scaling to full physical dimensions will allow for release of the model from flawed assumptions such as constant cake layer volume fraction and thickness throughout the system. Furthermore, rigorous modeling on a precise scale extends the model to account for random particle collisions with acute accuracy. A major finding of this study proves that forces within the colloidal filtration system are summed and transferred cumulatively through the inter-particle interactions. The force summation and transfer phenomenon only realizes its true value when the model is scaled to full dimensions. The overall strategy for model development, therefore, entails three stages: first, rigorous modeling on a microscopic scale; next, comprehensive inclusion of relevant physical dynamics; and finally, scaling to full physical dimensions.