Introduction

Microbial ecology controls the establishment of fecal bacteria in tropical soil environment

Microbial ecology controls the establishment of fecal bacteria in tropical soil environment

CP-2001-10
Microbial ecology controls the establishment of fecal bacteria in tropical soil environment

Fujioka, R.S. and M.N. Byappanahalli

Fecal indicator bacteria such as E. coli and enterococci are consistently present in Hawaii’s streams in concentrations exceeding recreational water quality standards. The source of these fecal indicator bacteria has been determined to be the soil where these bacteria are able to multiply and have become part of the soil microflora. The mechanisms by which these fecal bacteria are able to multiply under ambient soil conditions have not been determined. The objective of this study was to test two hypotheses by which these fecal bacteria can establish populations in the soil environment. The first hypothesis states that the soil environment is restrictive for the growth of fecal bacteria but a sub-population of fecal bacteria with metabolic characteristics adaptable to growth in soil will be selected to establish a population. The second hypothesis states that the soil environment is permissive and most strains of fecal bacteria will be able to multiply and become part of the soil microflora. The metabolic profile of soil isolates of 48 E. coli and 30 enterococci were determined based on their ability to metabolize 95 different carbon sources using the Biolog System. These results showed that many metabolically diverse strains of E. coli as well as six different species of Enterococcus were recovered from seven different groups of soil in Hawaii. These results support the hypothesis that soil conditions in Hawaii are permissive for the growth of most strains of fecal bacteria. Thus, the genetic capabilities of fecal bacteria are sufficiently robust to overcome all of the ecological constraints in the soil environment and have succeeded in becoming a minor but significant fraction of the soil microflora.