Introduction

Estimating hydraulic properties of coastal aquifers using wave setup.

Estimating hydraulic properties of coastal aquifers using wave setup.

CP-2008-04
Estimating hydraulic properties of coastal aquifers using wave setup.

Rotzoll, K., and Aly I. El-Kadi.

Wave setup is the elevated mean water-table at the coast associated with the momentum transfer of wave breaking, which occurs generally over several days. Groundwater responses to wave setup were observed as far as 5 km inland in central Maui, Hawaii. The analysis showed that at times of energetic swell events wave-driven watertable overheights dominate low-frequency groundwater fluctuations associated with barometric pressure effects. Matching peak frequencies at 1.7 x 10-6 Hz and 3.7 x 10-6 Hz were identified in setup and observed head using spectral decomposition. Similar to tides, the setup propagation through the aquifer shows exponentially decreasing amplitudes and linearly increasing time lags. Due to the longer periods of setup oscillations, the signal propagates deeper into the aquifer (~10 km in central Maui) than diurnal tides (5 km) and can therefore provide information on greater length scales. Hydraulic diffusivity was estimated based on the setup propagation. An effective diffusivity of 2.3 x 107 m2/d is consistent with aquifer parameters based on aquifer tests and tides. A one-dimensional numerical model supports the results of the analytical solution and strengthens the suitability to estimate hydraulic parameters from setup propagation. The methodology is expected to be beneficial to high-permeability coastal environments, such as on volcanic islands and atolls.