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Problem and Research Objectives 
 

Sensible and latent heat fluxes are the key variables in energy and water vapor exchange 
between the land surface and the atmosphere. Latent heat flux is the coupling link between the 
surface water, energy, and carbon exchanges with the atmosphere. Several techniques (e.g., 
lysimeters, eddy covariance systems, Bowen ratio methods, and large-aperture scintillometers) 
have been used to measure surface heat fluxes (Liu et al., 2011, 2013). However, in situ 
measurements of heat fluxes are costly and are therefore distributed sparsely, and cover only 
limited time periods. Consequently, a number of models have been developed to estimate surface 
heat fluxes from remotely sensed land surface temperature (LST) observations. 

LST lies at the heart of the surface energy balance (SEB) equation. All components of the 
SEB equation (i.e., sensible, latent, and ground heat fluxes as well as net radiation) are related to 
LST. Recently, Bateni and Entekhabi (2012a) showed that LST observations contain implicit 
information on the partitioning of available energy among the SEB components. LST 
observations have been utilized in three main groups of studies to estimate surface heat fluxes. 
The first group of studies is diagnostic. These studies use LST to solve the SEB equation and 
retrieve surface energy fluxes (Norman et al., 1995; Anderson et al., 1997; Bastiaanssen et al., 
1998a, 1998b; Su, 2002; Liu et al., 2007; Jia et al., 2009; Ma et al., 2012). The ground heat flux 
is usually taken as an empirical fraction of the net radiation. Additionally, surface heat fluxes can 
be retrieved only for instances in which remotely sensed LSTs are available. The second group is 
known as triangle approaches. These studies attempt to estimate the surface evaporation using 
empirical relationships between LST and vegetation indices such as the normalized difference 
vegetation index and leaf area index (LAI) (Jiang and Islam, 2001, 2003; Nishida et al., 2003; 
Wang et al., 2006; Tang et al., 2010; Sun et al., 2013). These methods need to define the dry and 
wet edges of the triangle space, which is site specific. 

The third group of studies estimates the surface heat fluxes by assimilating sequences of 
LST measurements within a variational data assimilation (VDA) framework using the 
parsimonious force-restore equation as a constraint (Castelli et al., 1999; Boni et al., 2001; 
Caparrini et al., 2003, 2004a, 2004b; Crow and Kustas, 2005; Qin et al., 2007; Sini et al., 2008). 
In contrast to the diagnostic and triangle approaches, this group of methods does not require any 
empirical or site-specific relationships and can provide temporally continuous surface heat flux 
estimates from discrete spaceborne LST observations. 

The VDA utilizes combined-source (CS) and dual-source (DS) schemes to simulate 
interaction between the land surface and the overlying air and to retrieve surface heat fluxes. The 
CS scheme does not distinguish the difference between soil and canopy temperatures and treats 
LST as the effective temperature of a mixed soil-vegetation medium. In contrast, the DS scheme 
accounts for the difference between soil and canopy temperatures and considers the interactions 
of the soil and canopy with the overlying atmosphere separately. 

Bateni and Liang (2012) and Bateni et al. (2013a, 2013b) significantly advanced the CS 
and DS VDA approaches by using the full heat diffusion equation as a physical constraint 
instead of the simple force-restore equation. However, the CS and DS VDA approaches by 
Bateni and Liang (2012) and Bateni et al. (2013a, 2013b) have been tested so far at only two 
humid sites with grassland vegetation cover (i.e., the First International Experiment and the 
Southern Great Plains sites). In this study, the performance of the recently augmented CS and DS 
VDA frameworks is assessed in detail using surface heat fluxes collected at six FluxNet sites 
with different vegetation covers (grassland, cropland, and forest) and climate conditions. These 



 
 

sites are chosen because they sample different climatic and vegetative conditions in an effort to 
evaluate the robustness of the VDA schemes in various hydrological environments. 

Sequences of daytime LST observations have various diurnal amplitudes depending on the 
available energy and the relative efficiency of SEB components (Bateni and Entekhabi, 2012a). 
Hence, an accurate characterization of the LST diurnal cycle is of vital importance for the 
reliable performance of the VDA methods. In this study, LST data from Geostationary 
Operational Environmental Satellites (GOES) are assimilated in the CS and DS VDA schemes to 
estimate surface heat fluxes. GOES can accurately characterize the LST diurnal cycle by 
providing LST data every 30 min and thus can significantly advance the robustness of the VDA 
framework. GOES LST can be accurately retrieved (Sun et al., 2004) and proved to be a 
significant data set for improving turbulent flux estimates of the land surface model (Xu et al., 
2011). 
 
 
Methodology 
 
Heat Diffusion Equation 

The soil temperature at depth z and time t, T(z,t), is given by the heat diffusion equation, 
which is given by 
 
𝐶 !"(!,!)

!"
= 𝑃 !"!(!,!)

!!!
  (1) 

 
where C and P are, respectively, the soil volumetric heat capacity (J m-3 K-1) and thermal 
conductivity (Wm-1K-1). For simplicity, T(z = 0,t) is indicated by T(t). 

The boundary conditions at the top and bottom of the soil column are required to solve the 
heat diffusion equation. The boundary condition at the top of the soil column, T(z = 0,t), is 
retrieved from the surface boundary forcing equation P dT(z = 0,t)/dz = G(t) (where G(t) is the 
ground heat flux at time t) (Bateni et al., 2013a). At the bottom boundary, a Neumann boundary 
condition is implemented as 
 
!"(!,!)
!"

= 0   (2) 
 
where l is the depth of the bottom boundary condition, which is set to 0.5 m (Hu and Islam, 
1995; Bateni and Liang, 2012; Bateni et al., 2013a). The heat diffusion equation is solved using 
an implicit finite difference scheme. The detailed information on discretization of the heat 
diffusion equation and its numerical implementation can be found in Bateni et al. (2012). 
 
Surface Energy Balance (SEB) 

The CS SEB scheme considers the soil and vegetation as a single source and follows 
Bateni et al. (2013a). For the CS approach, the land surface energy balance equation can be 
written as 
 
𝐺   =   𝑅! −   𝐻 −   𝐿𝐸   (3)  
 



 
 

where G is the ground heat flux (Wm-2), H and LE are the sensible and latent heat fluxes (Wm-2), 
and 𝑅! is the net radiation (Wm-2) that is obtained according to Bateni et al. (2013a). 

The sensible heat flux can be obtained with the LST (T) generated by the heat diffusion 
equation as follows: 
 
𝐻 =   𝜌  𝑐!𝐶!   U(𝑇 − 𝑇!)  (4) 
 
where ρ is the air density (kg m-3), 𝑐! is the heat capacity of air (1012 J kg-1 K-1), U and 𝑇! are, 
respectively, the wind speed (m s-1) and air temperature (K) at a reference height, and 𝐶! is the 
bulk heat transfer coefficient (-). The bulk heat transfer coefficient (𝐶!) can be written as the 
product of the neutral bulk heat transfer coefficient (𝐶!") and a correction function for 
atmospheric stability, f(Ri) (i.e., 𝐶! = 𝐶!" f(Ri), where Ri is the Richardson number). 𝐶!" can be 
related to roughness length scales for heat and momentum (Liu et al., 2007; Zhang et al., 2010), 
which is mainly a function of vegetation phenology and is assumed to vary on a monthly 
temporal scale (McNaughton and Van den Hurk, 1995; Jensen and Hummelshøj, 1995; Qualls 
and Brutsaert, 1996; Crow and Kustas, 2005; Bateni et al., 2013b). It scales the sum of turbulent 
heat fluxes (H + LE) and constitutes the first unknown parameter of the CS scheme. Following 
Crow and Kustas (2005), Sini et al. (2008), Bateni and Liang (2012), and Bateni and Entekhabi 
(2012b), the atmospheric correction function (f) proposed by Caparrini et al. (2003) is used 
herein. 

The second unknown of the CS scheme is evaporative fraction (EF), which scales 
partitioning between the turbulent heat fluxes and is given by 
 
𝐸𝐹 = !"

!!!"
  (5) 

 
The DS SEB scheme developed by Bateni and Liang (2012) is used in this study. The DS 

can model interaction within the soil-canopy-atmosphere system (Kustas et al., 1996; Bateni and 
Liang, 2012). In the DS SEB model, the net radiation absorbed by the canopy (RNC) is partitioned 
between the sensible (HC) and latent (LEC) heat fluxes for the canopy (RNC = HC + LEC, the 
subscript “C” refers to the vegetation canopy). The ground heat flux (G) can be calculated as the 
residual of the surface energy balance for soil (Bateni and Liang, 2012). 

The sensible heat fluxes for the canopy (HC) and soil (HS) can be estimated via (Bateni and 
Liang, 2012) 
 
𝐻! =   𝜌  𝑐!𝐶!"   𝑈!(𝑇! − 𝑇!)  (6a) 
 
  𝐻! =   𝜌  𝑐!𝐶!"  U!(𝑇! − 𝑇!)  (6b) 
 
where 𝑈! and 𝑇! are, respectively, the wind speed and air temperature at a reference height 
within the canopy, 𝑇!   and 𝑇! are the canopy and soil temperatures, and 𝐶!"  and 𝐶!" are the bulk 
heat transfer coefficients from leaves and soil to air within the canopy (-). 𝑇! is estimated with 
the heat diffusion equation (equation (1)). Equations for the estimation of 𝑇!  and 𝑇! can be 
found in Bateni and Liang (2012). 𝐶!"  and 𝐶!" are related to 𝐶!" to decrease the number of 
unknown parameters of the DS scheme. For detailed information, the reader is referred to Bateni 
and Liang (2012) and Bateni et al. (2013b). 



 
 

The total sensible heat flux (H) can be estimated via 
 
𝐻 =   ρ  𝑐!𝐶!   𝑈 (𝑇! − 𝑇!) (7) 

 
Similar to the CS SEB scheme, 𝐶! is related to 𝐶!" via 𝐶! = 𝐶!" f(Ri). The total sensible heat 
flux (H) is also given by the weighted average of sensible heat flux from the canopy and soil: 
 
𝐻 =   𝑓!𝐻! + (1− 𝑓!) 𝐻!  (8) 
 
where 𝑓! is the vegetation cover fraction. The evaporative fractions for the soil and canopy (EFS 
and EFC) are the other unknown parameters of the DS scheme and are given by 
 
𝐸𝐹! =

!"!
!!!!"!

  (9a) 
 
𝐸𝐹! =

!"!
!!!!"!

  (9b) 
 
𝐶!", EFS and EFC are the three unknown parameters of the DS SEB scheme that are estimated 
via a VDA framework. 

In the DS SEB scheme, the effective LST is calculated through a composite of the soil and 
canopy temperatures are follows: 
 
𝑇 = [𝑓!𝑇!! + 1− 𝑓! 𝑇!!]!.!"  (10) 
 
Adjoint State Formulation 

As mentioned in the previous section, CHN and EF constitute the unknown parameters of 
the CS SEB scheme that should be estimated by the VDA approach. In the DS SEB model, three 
unknown parameters (i.e., CHN, EFC and EFS) must be estimated. CHN varies on a monthly time 
scale (i.e., the scale of vegetation phenology) and thus one CHN value is retrieved in each 
monthly modeling period (Caparrini et al., 2003, 2004a, b; Crow and Kustas, 2005; Bateni and 
Liang, 2012; Bateni and Entekhabi, 2012b; Bateni et al., 2013a, b). EF is self-preserved during 
daytime hours (i.e., 09:00–16:00 LT), but it can vary from day to day (Gentine et al., 2007). 

A cost function (J) is defined to retrieve the unknown parameters of the CS scheme (i.e., 
CHN and EF) by minimizing the difference between the LST observations (from GOES) and 
estimates (from the heat diffusion equation). The cost function for the CS model can be written 
as 
 

1

0

1

0

1
, ,

1

' 1 ' ' 1 '

1
2

20
1

( , , , )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

( , ) ( , )2 ( , )[ ]

N t T
OBS i i T OBS i it

i
N

T T
R i i EF i i

i

N t l i i
it

i

J T R EF

T t T t K T t T t dt

R R K R R EF EF K EF EF

T z t T z tz t D dzdt
t z

λ

λ

−

=

− −

=

=

=

− −

+ − − + − −

∂ ∂
+ −

∂ ∂

∑∫

∑

∑∫ ∫
 (11) 



 
 

 
The first term on the right-hand side of Eq. (11) measures the difference between the 

GOES-measured LST (TOBS) and the predicted LST (T). CHN is transformed to R via CHN = 
exp(R) to make it strictly positive and meaningful. The second and third terms measure the 
difference between the parameter estimates (R and EF) and their prior values (R’ and EF’). As 
previously mentioned, CHN is hypothesized to be constant over the entire monthly assimilation 
period (N = 30 days), and EF is postulated to be invariant over each day during the assimilation 
window (i.e., from t0 = 9:00 to t1 = 16:00 LT). The last term is the heat diffusion equation, which 
is adjoined to the model (as a physical constraint) via the Lagrange multiplier, λ. D = P/C is the 
heat diffusion coefficient. 1

TK
− , 1

RK
− , and 1

EFK −

 are numerical constant parameters that weigh each 
term in the objective function and control its rate of convergence. Following Bateni et al. 
(2013a), 1

TK
− , 1

RK
− , and 1

EFK − are set to 0.01 K-2, 1000, and 1000, respectively.  
The optimal values for CHN and EF are found by minimizing the cost function. To 

minimize the cost function, its first variation should be set to zero (ΔJ = 0) (Bennett, 1992). 
Setting ΔJ to zero leads to a number of Euler-Lagrange equations that should be solved 
simultaneously through an iterative loop to obtain optimal values of CHN and EF. The Euler-
Lagrange equations for the CS VDA scheme can be found in Bateni et al. (2013a). 

Similarly, CHN, EFS and EFC are estimated by minimizing the difference between the 
GOES LST and the effective LST estimates (Eq. 10). The cost function for the DS model is 
defined as, 
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where the third and fourth terms on the right-hand side of Eq. (12) measures the difference 
between the soil and canopy evaporative fraction estimates and their prior values, respectively. 

1
TK
− , 1

RK
− , 1

SEFK
− , and 1

CEF
K −  are respectively set to 0.01 K-2, 1000, 1000, and 1000 based on Bateni 

and Liang (2012).  
In the DS VDA scheme, the optimal values for CHN, EFS and EFC are found by minimizing 

the cost function (Eq. 12). Setting ΔJ to zero yields a number of Euler-Lagrange equations as 
follows:  
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34 (1 ) ( )exp( 0.5 )S A C P HN HAA T EF c C f Ri a LAI Uε σ ρ= − + −  
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emissivity (-), σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4), and SR

↓  and LR
↓  are 

the downward shortwave and longwave radiation (W m−2). 
The adjoint model (Eq. [13a]) has to be integrated backward in time using the terminal and 

boundary conditions (Eqs. [13b], [13c], and [13d]). The unknown parameters of the DS scheme 
(i.e., R, EFS, and EFC) can be estimated via Eqs. (14a), (14b) and (14c). The DS VDA scheme 
improves estimates of the three unknown parameters iteratively starting from the initial guesses 
(R’, EFS’, and EFC’). 
 
 
Principal Findings and Significance  
 
Neutral Heat Transfer Coefficient and Evaporative Fraction 

As mentioned in the previous section, CHN and EF are the two key unknown parameters in 
the CS model, and CHN, EFS and EFC constitute the three unknown parameters in the DS model. 
CHN and EF are estimated on monthly and daily timescales, respectively. In the VDA framework, 



 
 

the accuracy of turbulent heat flux estimates mainly depends on the robust retrieval of these 
unknown parameters. 

The estimated CHN values from the CS and DS schemes for the six experimental sites are 
shown in Table 1. CHN estimates from the CS and DS models have generally the same order of 
magnitude and are comparable with each other over different assimilation periods. However, in 
most cases, the DS CHN values are slightly larger than those of the CS model. The discrepancy 
between CHN estimates from the CS and DS schemes is due to the difference in the structure of 
the CS and DS schemes. To understand this distinction better, the CHN estimates from the CS, 
(CHN)CS, and DS, (CHN)DS, schemes are related using Eqs. (4) and (8a):  
 

( ) ( ) A
HN DS HN CS

W A

T TC C
T T
−

=
−

  (15) 

 
The land surface temperature (T) is usually larger than the air temperature within the canopy 
(TW) during the assimilation window (i.e., T>TW). Subtracting TA from both sides of the 
inequality leads to (T-TA)>(TW-TA). Thus, the CHN estimates from the DS scheme should typically 
be higher than those from the CS scheme (see Table 1).  
 

Table 1. Summary of the Characteristics Over Six Study Sites 

 
	  

LAI values over different periods are listed in Table 2 to explore the relationship between 
CHN estimates and vegetation phenology. The CHN estimates generally increase with LAI values 
at each site. Remarkably, the CHN estimates from both schemes are higher at sites with larger 
LAI values (i.e., Chestnut and Missouri) (Table 1), implying that the VDA system can robustly 
retrieve CHN from sequences of LST observations. This is particularly interesting because no 
information on vegetation phenology is used in the CS model. Yet, its CHN estimates are larger at 
sites with denser canopies. 
	  

Table 2. Neutral Bulk Heat Transfer Coefficient Estimates from the CS and  
DS Models 

 



 
 

 
Figure 1 shows the time series of the evaporative fraction (EF) values estimated from the 

CS and DS schemes. For comparison, EF observations are also shown on the same figure. The 
estimated EF values from the CS and DS models agree well with the observations in terms of 
both magnitude and day-to-day dynamics. Additionally, the DS model yields EF values closer to 
observations than the CS model. Oscillations in the estimated EF values are consistent with land 
surface wetting and drying events. EF values increase sharply when precipitation happens and 
reduce in drydown periods even though no soil moisture or precipitation data are used in the 
model. For example, during the drydown period at the Brookings (Julian day 171 to 191), 
Goodwin (Julian day 191 to 211) and Missouri (Julian day 191 to 221) sites, EF estimates 
decrease significantly.  
 

  

Figure 1. Time series of evaporative fraction (EF) estimates from the CS and DS models. 
 

Sensible and Latent Heat Fluxes 
Figure 2 compares the half-hourly turbulent heat flux estimates from the CS and DS 

models with the corresponding measurements at the Brookings, Goodwin, Bondville, Mead, 
Chestnut, and Missouri sites. This figure allows us to evaluate the performance of the CS and DS 
models in different hydrological and vegetative conditions. As shown, the sensible and latent 
heat fluxes retrieved from both models are in good agreement with the observations and mainly 
fall around the 1:1 line. Additionally, the DS scheme performs better than the CS scheme. This is 
because the DS model can represent the physics of the problems more robustly. The misfits 
between the model estimates and observations are mainly due to the physical assumptions 
(constant soil thermal conductivity (P) and heat capacity (C), constant daily EF, EFC, EFS, 
constant monthly CHN) in the CS and DS models. Over the Goodwin and Chestnut sites, both the 
CS and DS schemes tend to overestimate latent heat flux when it is larger than 200 W m-2. This 
may be due to the undermeasurement of sensible and latent heat fluxes by the Eddy Covariance 



 
 

(EC) technique, i.e., the so-called “energy imbalance” problem. The energy balance ratio (EBR = 
(H+LE)/(RN-G)) is 0.78 and 0.75 at the Goodwin and Chestnut sites, respectively, implying that 
the EC method underestimates the latent heat flux. This leads to a bias greater than 60 W m-2 in 
the LE estimates at these two sites. 

The bias and root-mean-square error (RMSE) of the turbulent heat flux estimates at the six 
experimental sites are shown in Figure 2 as well. For sensible heat flux, the six-site-averaged 
bias and RMSE (shown in parenthesis) from the CS and DS schemes are 7.5 (59.7) and 1.7 
(52.5) Wm-2, respectively. For latent heat flux, the six-site-averaged bias (RMSE) is 19.0 (111.1) 
Wm-2 for the CS scheme and 12.7 (96.4) Wm-2 for the DS scheme. The low bias and RMSE 
values imply that the CS and DS schemes can retrieve turbulent heat fluxes accurately.  

By treating the soil and the canopy as different sources and accounting for their interaction 
with the overlying atmosphere in the DS model, the bias (RMSE) of retrieved sensible and latent 
heat fluxes over the six experimental sites is on average 77% and 33% (12% and 13%) less than 
that of the CS model. Overall, the statistical metrics in Figure 2 indicate that decomposing the 
land surface into canopy and soil sources via the DS model improves the estimate of turbulent 
heat fluxes.  

The discrepancies between the results of the CS and DS models are mainly due to the 
different model structures. The DS model treats the soil and vegetation canopy as dual sources, 
while the CS model treats them as combined sources. The DS model can characterize the 
heterogeneity of the land surface and weighs the soil and canopy fluxes via the vegetation cover 
fraction (fC) (see Eq. 8b), while the less elaborate CS scheme cannot. The fC values for the six 
sites are listed in Table 1. As shown in Figure 2, the largest discrepancy between the CS and DS 
turbulent heat flux estimates occurs when fC is approximately 0.5–0.6 (at the Goodwin and Mead 
sites). When fC is about 0.5, the land surface heterogeneity is at its peak, and thus the CS model 
cannot capture the physics of the underlying problem as robustly as the DS model. As a result, 
the maximum difference is observed between the CS and DS scheme H and LE estimates (see 
Table 3). As fC increases to 0.7 (at the Bondville site), land surface patchiness decreases, and 
therefore the misfit between the CS and DS model retrievals decreases (Table 3). At an fC of 
about 0.9 (at the Chestnut and Missouri sites), land surface patchiness reaches its minimum 
because the land surface is mainly composed of canopy. Consequently, the CS model can 
retrieve turbulent heat fluxes almost as accurately as the DS model. Turbulent heat fluxes are 
mainly controlled by atmospheric factors rather than land surface properties at the Brookings site 
since it is a wet site. Therefore, even with an fC value of 0.55 at this site (i.e., high land surface 
heterogeneity), a small discrepancy is found between the CS and DS model estimates (Table 3). 
At the Bondville site, fC illustrates a pronounced seasonal variation and increases from 0.53 (for 
Julian days 151–180) to 0.86 (for Julian days 181–210). As a result, the discrepancy between 
turbulent flux estimates from the CS and DS model is higher for Julian days 151–180 compared 
to Julian days 181–210 (see Table 3). 



 
 

 
Figure 2. Scatterplots between modeled (CS and DS) and measured (EC data) sensible and latent heat 
fluxes (H and LE) in the six sites for Julian days 151–240 in 2006. 

 



 
 

Table 3. The Percentage Relative Difference of Turbulent Heat Flux Estimates from the  
CS and DS Schemes 

 
 

Figure 3 shows the time series of daytime-averaged (0900–600 LT) estimated sensible and 
latent heat fluxes from the CS and DS models at the six experimental sites. Results from control 
experiments (i.e., without assimilation of GOES LST) and EC observations are indicated in 
Figure 3. The CS and DS model estimates are consistent with the observations in terms of both 
magnitude and day-to-day dynamics, implying that assimilating LST data from GOES can 
reliably partition the available energy among sensible and latent heat fluxes. However, the 
turbulent heat flux estimates degrade in wet periods (e.g., Julian days 151–180 at the Brookings 
site and Julian days 201–215 at the Mead site). At the Brookings and Mead sites (data for Mead 
shown in parenthesis), the daytime-averaged latent heat flux measurements increase to 
approximately 700 Wm-2 (600 Wm-2) in the corresponding aforementioned wet periods, while the 
model estimates cannot reach those high values. This happens because the upper bound of EF 
(i.e., EFS and EFC) in the CS (DS) model is set to 0.97 to avoid numerical instabilities, while the 
corresponding EF observations are sometimes larger than 1.0 due to negative sensible heat flux 
measurements (according to Eq. [5], negative sensible heat flux measurements lead to EF values 
larger than 1.0).  

As indicated in Figure 3, the estimated H and LE values from the VDA models are closer to 
the observations than those of the control experiments. The good agreement between the 
estimated and observed turbulent heat fluxes illustrates that the VDA model can effectively use 
implicit information in the LST observations to constrain the unknowns of the CS and DS 
schemes. In contrast, the control experiments perform poorly since there is no constraint by the 
LST observations. 
 



 
 

 
Figure 3. Time series of daytime-averaged sensible and latent heat flux (H and LE) estimates in the six 
experimental sites from the CS scheme with (blue dashed lines) and without (grey dashed lines) 
assimilation of GOES LST. Corresponding estimates from the DS scheme with (red solid lines) and 
without (black solid lines) assimilation of GOES LST. Observations are shown by open circles. 

 
Figure 4 shows the mean diurnal cycle of observed and estimated turbulent heat fluxes 

from the CS and DS models at the six experimental sites. As indicated, the diurnal variations of 
retrieved turbulent heat fluxes from both models agree well with those of observations in terms 
of magnitude and phase. A large discrepancy between the CS and DS model diurnal cycles is 
found at the Goodwin (fC = 0.59) and Mead (fC = 0.59) sites, which have high land surface 



 
 

heterogeneity. In contrast, at sites in which the land surface tends to be more homogeneous (e.g., 
Bondville, Chestnut, and Missouri, with fC of 0.74, 0.93, and 0.93, respectively), the diurnal 
cycle retrievals from the CS and DS scheme are close. At the Chestnut site, the CS and DS 
models overestimate both the sensible and latent heat fluxes. This is mainly because turbulent 
heat flux measurements from the EC system at the Chestnut site may contain errors and suffer 
from the “energy imbalance” problem. Overall, the misfit between the observed and estimated 
diurnal cycles is due to a number of reasons, including the assumptions of constant daily 
evaporative fraction and constant monthly neutral bulk heat transfer coefficient and the use of 
constant soil thermal properties over the modeling period. 
 

  
Figure 4. Mean diurnal cycle of turbulent heat flux estimates from the CS and DS models along with the 
observations in the six experimental sites (H and LE mean sensible and latent heat fluxes). 

 
Figure 5 shows the relationship between RMSE of turbulent heat flux estimates and its soil 

moisture and vegetation cover fraction, at each of the six explored sites. Each circle corresponds 
to a site and its size represents the RMSE of flux estimates at the site (larger circles illustrate 
higher RMSE values). As indicated, the CS and DS models perform better at dry and/or sparsely 
vegetated sites than at wet and/or densely vegetated sites. Similarly, the results in Figure 2 
indicate that the CS and DS schemes yield larger biases and RMSE values (less accurate 
turbulent heat fluxes) over densely vegetated/wet sites than over lightly vegetated/dry sites. For 
example, the bias and RMSE of turbulent heat flux estimates at the Chestnut and Missouri sites 
with denser vegetation cover (i.e., higher LAI value) are larger than those at the Goodwin, 
Bondville, and Mead sites with lower canopy cover. Additionally, at the Brookings site, which 



 
 

has higher soil moisture, the turbulent heat flux retrievals degrade compared to the drier 
Goodwin, Bondville, and Mead sites.  
 

 
Figure 5. The relationship between the RMSE of turbulent heat flux estimates 
at each site and its soil moisture (SM) and vegetation cover fraction (fC). 
Circle size is determined by the RMSE of flux estimates at each site (larger 
circles indicate higher RMSE values). 

 
In another study, Crow and Kustas (2005) tested only the CS VDA system with the force-

restore equation as an adjoint (VDA-FR) over a range of vegetative and hydrological conditions 
in the southern U.S. They found that performance of the CS VDA-FR framework degraded over 
densely vegetated and/or wet sites, and suggested additional land surface information (e.g., leaf 
area index, LAI) is required to accurately predict surface heat fluxes in densely vegetated and 
wet sites. In comparison to the Crow and Kustas (2005) study, this project tested both the CS and 
DS VDA systems with the full heat diffusion equation (instead of the parsimonious force-restore 
equation) over six sites across the USA. Since even the DS scheme (that uses LAI) cannot 
perform robustly in densely vegetated/wet sites, it is suggested to assimilate soil moisture or 
rainfall observations within the VDA scheme in future studies. 
 
Impact of Climate Change on Surface Heat Fluxes 

In addition to LST, which lies at the heart of the surface energy balance equation and has 
information on the partitioning of available energy among the surface energy balance 
components (Bateni and Entekhabi, 2012a, 2012b), LAI variations (used only in the DS model) 
control this partitioning (Segal et al., 1988; Alfieri et al., 2009; Bateni et al., 2013b). In this 
section, a number of sensitivity tests are performed to understand the impact of changes in LST 
and LAI on the surface turbulent flux estimates. The main goal of sensitivity tests is to provide 
insights into the effect of variations in LST and LAI (due to climate change) on the heat fluxes. 



 
 

The Bondville site is selected for this purpose in this study. In the first set of tests, LST 
observations are varied by ±2, ±4, ±6, ±8, and ±10 K from their nominal values and are used in 
the CS and DS schemes to estimate turbulent heat fluxes. Figure 6 shows the sensitivity of H and 
LE estimates from the CS and DS schemes to uncertainties in LST. For the CS approach, 
increasing LST by 2, 4, 6, 8, and 10 K leads to a 13.0%, 18.3%, 23.0%, 33%, and 37.8% 
reductions in H and a 10.9%, 22.8%, 32.1%, 39.9%, and 46.9% increase in LE. On the other 
hand, decreases in LST by 2, 4, 6, 8, and 10 K causes H to be decreased by 12.4%, 27.5%, 
40.1%, 48.8%, and 55.1%, and causes LE to be increased by 9.9%, 17.9%, 22.9%, 26.1%, and 
28.3%.  
 

 
Figure 6. The percentage relative error of estimated sensible heat flux by 
different sensitivity tests accounting for variations in LST. The original run 
sensible heat flux estimates are obtained by the CS and DS models with 
nominal LST observations at the Bondville site. 

 
As indicated in Figure 6, the estimated turbulent heat fluxes from the DS scheme are less 

sensitive to uncertainties in LST (i.e., the DS model performs better than the CS model when 
biased LST data are assimilated). For example, H and LE estimates vary 13.6% and 27.8% as 
LST becomes 6 K larger than its nominal value.  

To assess the effect of variations in LAI on the sensible and latent heat flux estimates, the 
nominal LAI values are varied by ±20%, ±50%, and ±100% and are used in the DS model. Since 
the CS model does not use LAI, the sensitivity tests herein are performed with the DS approach 
only. The sensitivity of estimated sensible and latent heat flux to variations in LAI is indicated in 
Figure 7. Decreasing LAI by 20%, 50%, and 100% yields a 4.2%, 8.1%, and 13.1% increase in 
sensible heat flux and a 3.8%, 8.0%, and 18.1% reduction in latent heat flux. Also, the DS model 
tends to yield larger errors when fed with underestimated leaf area index values. Overall, all of 



 
 

these results clearly demonstrate that the correct specification of LST and LAI play an important 
role in the accurate retrieval of turbulent heat fluxes. These findings also allow us to 
quantitatively characterize the effect of uncertainties in LST and LAI on the turbulent heat flux 
estimates.  
 

 
Figure 7. (a) The percentage relative error of estimated sensible heat flux by 
different sensitivity tests accounting for changes in leaf area index (LAI). The 
original run sensible heat flux estimates are obtained by the CS and DS 
models with the nominal LAI observations, (b) The same as in Figure 7a but 
for latent heat flux. 
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