2022 Spring WRRC Seminar Series: March 18, 2022

GROUNDWATER FLOW IN THE MOANALUA/RED HILL/HALAWA REGION: Evaluating Rates, Directions, and Contamination Risks

Mr. Robert Whittier and Dr. Donald Thomas

00:11	[Keri Kodama (host)]: All right. Hi, everyone. Welcome to this
00:16	third seminar in our WRRC spring seminar series. We have a general theme of Red Hill,
00:24	the Red Hill water crisis. And this week, Robert Whittier and Donald Thomas will be talking about
00:31	groundwater flow and the Moanalua/Red Hill/H \bar{a} lawa region. Robert Whittier is a geologist with the
00:37	Hawai'i Department of Health Safe Drinking Water Branch and an affiliate faculty at UH Mānoa
00:44	Department of Earth Science and WRRC. And Donald Thomas is a member of the faculty at the Hawai'i
00:49	Institute of Geophysics and Planetology at UH, and serves as the Director of the Center for
00:55	the Study of Active Volcanoes at UH-Hilo. Without further ado, I'll turn it over.
01:00	[Robert Whittier (speaker)]: Well, thank you, Keri.
01:05	Here's the structure of our slides. We'll be talking about structures.
01:10	First, talk a little bit of a background, go over the problem statement, talk about the geologic
01:17	setting of the study area, and the structures that influence groundwater flow trajectories, and an
01:25	alternative approach to the general chemistry to evaluate groundwater flow trajectories,
01:31	and also the planed comprehensive regional geologic investigation to answer the currently
01:37	unanswered questions. Okay, for background, both Don and I have been involved in Red Hill for quite
01:43	some time. My first involvement was in 2006, working as a consultant for the Navy. And as
01:51	part of that work, I did the contaminant flow and transport model or contaminant transport modeling,
02:00	and also set up and executed a regional groundwater monitoring and aquifer testing
02:08	study. Then in 2014, of course, we had a release, and I was at the Department of Health at the time,
02:15	and got involved in the oversight end of Red Hill. And we also invited Don to assist us
02:23	due to his in-depth knowledge of Hawai'i hydrogeology and groundwater.
02:29	So here's the overarching question. And that is, how do we assess the risk of
02:35	contamination from any source in a realistic way? Specific to this problem is, for Red Hill,
02:42	how to assess the risk from free phase and dissolved phase petroleum contamination,
02:49	to groundwater and to public drinking water sources within the area.

02:54	And at this point in time, we can't state with certainty, the rate or direction of groundwater
03:00	flow, and thus, we can't state with certainty, the rate and direction that contamination will move.
03:07	Key to gaining this understanding is looking at the geologic structures that influence
03:13	groundwater and contaminant transport, which currently is incomplete.
03:20	So this diagram on the left actually shows our problem. We have
03:27	a potential source of fuel contamination, and hydrocarbon fuel is light relative to groundwater.
03:34	Also, it's immiscible in that it doesn't mix with water. So it's referred to as a Light Non-Aqueous
03:40	Phase Liquid. In small releases, we can retain the LNAPL or that free product phase within the
03:51	vadose zone, but due to recharge, we'll get contaminant migration of the dissolved
03:57	phase to the water table. In a large release, which is definitely a potential at the Red Hill
04:03	facility, we can get both the dissolved phase and the LNAPL phase down to the water table,
04:10	at which point the plume will spread. And structures that are present at Red Hill that exist
04:17	exert a significant control on the degree and direction of spreading.
04:24	And currently, how these structures influence groundwater flow and the resulting groundwater
04:31	flow trajectories beneath Red Hill and in the region are not well understood.
04:37	We borrowed this diagram from the Navy's conceptual site model for Red Hill. And it
04:44	actually shows our problem: we have 20 very large underground fuel storage tanks that are situated
04:52	within the rock of the Red Hill Ridge. Bottoms of which are about 100 to 150 feet above
05:00	the groundwater and that groundwater is a primary drinking water aquifer for the island of Oʻahu.
05:06	To the northwest, we have two—
05:11	we have a primary drinking water source and also to the southwest a primary drinking water source.
05:18	These two drinking water sources are shafts, which are basically tunnels excavated along the
05:25	water table, distribute the pumping over a large area, and reduce the risk of saltwater intrusion
05:35	resulting in chloride fouling of our drinking water source.
05:38	Unfortunately, the water table is where the LNAPL reside. So that increases the risk of
05:48	impactful contamination from any spill at Red Hill to these type of drinking water sources.
05:57	To the southeast, we have conventional wells.
06:03	And they draw their water from deeper in the aquifer, so less susceptible to petroleum
06:08	contamination but nevertheless need to be considered. We have the basalt, which I've talked
06:15	about previously, but also lower permeability structures, which we'll talk about in more detail:
06:22	saprolite and valley fill in between the ridges. And also at the toe of the Red Hill Ridge,

06:29	late stage volcanics which resulted in explosive eruptions
06:34	and the associated structures, subsurface structures, with those explosive eruptions.
06:43	So looking at a geologic map of the area, we have the Red Hill facility
06:48	to the northwest. And southeast, we have valleys which are filled with alluvial valley fill
06:56	and underlying saprolite, low permea - poorly permeable structures.
07:04	Also to the northwest we have several primary drinking water sources including the $H\bar{a}$ lawa shaft,
07:11	which again draws us water from right at the water table. Going mauka to makai,
07:20	or from mountain to ocean, we will encounter a
07:29	structure called caprock, which is a composite of marine deposits, beach deposits, that extend down
07:39	into the water table. Internally viewed as poorly permeable, but can have some highly permeable
07:47	sequences within that structure. Also is the late stage volcanics and associated tuff rings,
07:57	again, poorly permeable, and right at the toe of the Red Hill Ridge. If we look at the
08:07	groundwater elevations going from the southeast, to the northwest, starting here at Kalihi Valley,
08:14	they tend to step down going from ridge to ridge. This gives us a hydraulic potential
08:21	for groundwater flow and thus contaminant transport from the southeast to the northwest.
08:31	But the other explanation for the step down is the semi-compartmentalization for the valley fill And
08:42	we also have light stage, volcanic lava flows overlying some of the valley fill in the Kalihi
08:51	and the Nu'uanu Valley. So the relationship between groundwater and the valley fill and
08:59	saprolite sequence has been considered for quite some time. In 1942, Wentworth looked at the
09:09	relationship between the valley fill saprolite sequence and the underlying basalt and groundwater
09:18	and came up with two potential realizations since he didn't have boreholes to ground truth it. One
09:24	would be shown here as a—the shallowest extension of the valley fill into the
09:33	aquifer. And it shows that only in Moanalua Valley would we get any significant
09:41	extension of the valley fill into the aquifer. In the North Hālawa Valley and South Hālawa Valley,
09:48	very little extension of the valley fill saprolite into the aquifer. But he also
09:56	reasoned that if you look at the slopes of the valley walls and extended them downward, where
10:02	you get a much deeper intrusion of the valley fill saprolite, very deep in Moanalua Valley,
10:12	less steep but still significant in North and South Hālawa Valley. And this is at
10:17	a cross section at the 500 foot elevation along the axes of the various ridgelines.

10:32	Later, Mink in 1980 considered the effect that caprock may have on groundwater flow.
10:40	And he reasoned that caprock is generally a poorly permeable structure, and that it would
10:47	divert groundwater flow from a direct mauka-makai flow path to a flow path following the groundwater
10:57	elevation potential from Honolulu
11:01	to Pearl Harbor. And he estimated that minimal groundwater flow in this direction but about
11:07	10 to 15 million gallons per day across this boundary here from Honolulu into
11:17	Pearl Harbor. If that is correct, that has a—puts the ground drinking water sources to the northwest
11:27	at a significant risk to contamination originating at the Red Hill facility.
11:36	More widely accepted groundwater flow trajectories in this area is that, in many USGS publications,
11:44	that reason that the valley fill saprolite divide the Honolulu aquifer into
11:50	sub-aquifers or compartments, and that the general groundwater flow would be
11:58	in the mauka-makai direction, and this is as described by Hunt in 1996. But he added a caveat.
12:08	He said the effectiveness of these barriers would diminish going inland and that their
12:15	penetration into the underlying basalt would also decrease going inland.
12:20	So the Mink—we'll refer to as the Mink conceptual model and the Hunt conceptual
12:26	model are not necessarily mutually exclusive. If we look at, going down South Hālawa Valley,
12:36	look at the possible structures that the groundwater flow would encounter and the
12:40	possible directions of groundwater flow, we can see some very different
12:48	risk contamination scenarios. Groundwater flow is mauka-makai.
12:55	It will go from the permeable basalt and then encounter the
13:04	low permeability of the saprolite and the valley fill, and in some cases also encounter
13:10	the subsurface structures associated with the late stage volcanics. Finally encounter the caprock
13:19	again generally viewed as being poorly permeable, but can have zones of high permeability,
13:26	such as limestone - reef limestone layers, and associated dissolution channels.
13:37	If we go from the southeast or the northwest, depending on where that groundwater
13:44	pathline originates, we can have an unimpeded pathway
13:51	from Pearl Harbor-or from Honolulu to Pearl Harbor, or increasingly impeded
13:58	flowpath where groundwater would have to flow beneath the saprolite valley fill sequence. So two
14:08	very contrasting risk implications depending on which groundwater flow scenario is most accurate.
14:20	If we look at groundwater elevations within the facility itself, and this
14:27	was groundwater elevations taken on December 23, and I have the year wrong, that'd be 2021.

14:36	We see that during a period when the Red Hill Shaft was shut off, as was done following the
14:44	November 20 release, that we have almost no groundwater gradient potential going down the
14:52	axis of the Red Hill Ridge, we have a 2 hundredths of a foot (0.02 foot) groundwater elevation drop
15:02	over a span of about 0.7 kilometers. That actually is within the realm of uncertainty of the
15:09	measurements. We do have a decreasing groundwater potential going to the northwest, which
15:19	is fairly significant, about 0.2 feet. That would imply groundwater flow in this direction. However,
15:30	if we look at the southeast side, we have an almost identical drop in groundwater potentially
15:37	going to the southeast. So it is very difficult to ascertain groundwater flow directions in Red Hill
15:46	based upon groundwater elevations and relative groundwater elevation potential alone.
15:54	So again, the depth of the valley fill, and the saprolite, which is one of the keys that
16:01	we need to understand groundwater flow trajectories within this area.
16:07	So to that end, the Navy working with Boise State University conducted a seismic survey
16:15	to image the contact between the valley fill and saprolite wedge and the underlying basalt
16:25	And so these line shows the transects that were done on South Hālawa Valley and North Hālawa
16:34	Valley, and my interpretation of the depth of penetration into the aquifer shown in percent of
16:44	the penetration into the—down to the—did point to the transition zone of the freshwater lens.
16:57	So, the red line is where we would first see the contact of the basalt saprolite interface
17:04	at the water table. Red line is that point at which that saprolite valley fill extends 50%
17:16	into the freshwater lens. See that we start seeing some protection right adjacent to the
17:30	tank farm. And we do see protection extending up to about even with the Hālawa shaft.
17:41	But this is very shallow intrusions down to about here is about the 25% into penetration
17:51	point down here, which is near the bottom end of the fuel facility and well below the
17:58	location of the Hālawa shaft. If groundwater flow is to the northwest then
18:06	there is a limitation to the protective nature of the saprolite valley fill.
18:13	Here is an actual transect—seismic transect that was taken right adjacent to
18:20	the Hālawa shaft and North Hālawa Valley. And it shows the saprolite valley fill contact
18:28	extending to about 20 feet below sea level or about 40 feet into the freshwater lens.
18:43	So the next structure that we need to consider is a late stage eruptions and the tuff rings.
18:52	And these are structures that are associated with a late stage volcanics located here at the toe
18:58	of the Red Hill Ridge and also extending into Moanalua Valley. For mauka-makai flow,
19:09	it does present a further barrier, but we could get flow around it. But the extent of that
19:19	resistance to groundwater flow depends on the nature of the structure beneath

19:24	the subs—beneath the surface of the—beneath the ground's surface and into the water table.
19:33	So here is a conceptualized cross-section of the
19:40	Salt Lake tuff ring complex
19:44	along this transect right here. So we have what we refer to as a diatreme, which is basically the
19:52	explosive event where all of this rock got ejected and then much of it fell back in. We have the
20:04	aerial deposits of the volcanic tuff ash on either side, but they are primarily surface structures.
20:14	The late stage eruptions actually require some sort of plumbing to get the magma up here into
20:21	the groundwater to result in that steam-generated explosive eruption. And that would probably be a
20:30	dike, another potentially vertical planar-type structure that would be a barrier to groundwater
20:38	flow. So to look at that, these structures have varying densities. We can look at the subsurface
20:47	density using gravity measurements. So DOH and— University of Hawai'i and DOH did a seismic study—
20:59	gravity study looking for gravity contrast. On the light end would be saprolite.
21:08	Tuffs are a little bit denser. Basalt would be more in the dense intermediate range. And finally,
21:15	dikes and other intrusives would be at the high end. Diatremes the—have not yet been defined.
21:26	And here was a result of that. The warmer colors indicate positive gravity anomalies or
21:35	denser subsurface structures. The cooler colors, negative density anomalies or
21:42	less dense subsurface structures. So the positive density anomalies for present,
21:48	directly underneath the \bar{A} liamanu Crater within the base of the Moanalua Ridge and Moanalua Valley.
21:59	The negative or less dense structures,
22:03	ironically, would be within the Salt Lake Crater, which is in contrast to Āliamanu Crater,

- 22:11 also within the southern part of South Hālawa Valley, and the lower part of the Red Hill Ridge.
- 22:21 So what does this mean? Means it provides possible evidence of dense structures and aquitards
- 22:29 here in the mauka-makai flow path. It also provides an alternate hypothesis for our
- 22:43 flat water table beneath the Red Hill facility.
- 22:50 So we looked at structures and it's not totally answered all of the questions.
- 22:54 So an alternative approach would be to look at the groundwater chemistry.
- 22:58 And this is something that I'm pursuing as part of my job at the University,
- 23:02 now looking at the overall risk of public drinking water sources to contamination.
- 23:12 So this is a multi step process. First look at what groundwater species are commonly
- 23:19 measured and use them as tracers. Establish their concentration in a natural setting as a baseline.
- 23:27 that would be the unimpacted recharge zones. Then model the chemical distribution in groundwater and

23:34	compare the model results with the measured data and look for zones of enrichment and depletion.
23:42	So we're looking at land use influence versus groundwater chemistry. For our
23:49	two conceptual models of groundwater flow, the mauka-makai flow would be under non-developed
23:54	land. So the chemistry should be very similar to that of the upslope recharge areas.
24:02	If we looked at Honolulu to Pearl Harbor, it's an urbanized area. So then we should
24:09	be seeing anthropogenic impact. Two preliminary tracers we've looked at is chloride, comes from
24:16	rainfall and dry deposition, anthropogenic source would be irrigation with groundwater,
24:23	and another natural source near the coast would be saltwater intrusion.
24:28	Nitrate results from atmospheric deposition and rainfall, the decay of organic matter,
24:36	which should be at a steady state in the upper recharge zones, and anthropogenic
24:43	sources would include fertilizers and wastewater. So, our goal here
24:49	is to compare—compare the site chemistry with that of upslope recharge areas of groundwater.
24:58	Looking at chloride. The approach we took was chloride mass balance
25:03	in that we have atmospheric rainfall deposited chloride. The rainfall will get evaporated,
25:14	increasing the concentration of chloride in the recharge water at a predictable rate.
25:20	And so we do a mass balance approach. We can then estimate the concentration of chloride
25:28	in the recharge and put that into a groundwater flow model. So, to validate this, we have a
25:38	climate station here, right outside of my office here at the upper Pearl City,
25:45	and do a water balance study and estimate recharge and also collect
25:56	the rainwater to get a chloride composition of rainwater and dry deposition. So when we did
26:04	our water balance salinity calculation, we got a recharge concentration of 25 milligrams per
26:13	liter. We also have a lysimeter for collecting soil water. So during periods of recharge,
26:20	collected soil water at 90 centimeters, and got 20 milligrams per liter, so very close agreement.
26:29	Put that into our groundwater model. Because not only do we have a climate station and lysimeters,
26:34	we have a well right outside of our office. So collect a sample from the well,
26:41	chloride is about 18-and-a-half milligrams per liter. The model chloride for that same
26:46	well is about 19.8 milligrams per liter. So we seem to have good agreement there.
26:54	So this map shows the distribution of rainfall and dry deposition chloride and recharge. The inset
27:07	shows the Red Hill area. And the arrows show our two conceptualized groundwater flow trajectories.
27:16	The average recharge concentration of chloride above the facility would be about 39 milligrams

27:25	per liter. So that means for mauka-makai flow, the groundwater should be less than 39 milligrams per
27:33	liter. But if we go from Pearl Har—Honolulu to Pearl Harbor, then we're flowing through areas of greater
27:46	chloride groundwater recharge. So then our groundwater chloride should be greater than
27:52	39 milligrams per liter. Now, we've put this in a groundwater model,
28:01	look at—map the results, but map them as excess chloride, which is a percentage of additional
28:11	chloride measured versus that, that the model predicted based on rainfall and dry deposition.
28:18	We validate that model using those wells that are in the conservation or primary recharge areas.
28:26	You got very—pretty good agreement with the model. So it does seem to work. And if we look
28:33	in the Red Hill region, we do see some wells that do—where the groundwater chlorides do agree with
28:43	that predicted by the model, but overall, we have significant excess groundwater chloride.
28:51	This would be inconsistent with mauka-makai flow. So the next question is, where does
29:00	that come from? We have a major pumping center. And my hypothesis would be that, that
29:09	pumping center is drawing chlorides from deep beneath it up into the freshwater lens.
29:16	But we have a series of wells that have multiple depth sampling points. And if we look at that,
29:26	chlorides in the water column versus the average of chlorides measured at the Red Hill Shaft, we
29:34	cannot account for what is pumped versus what is in the water column beneath the Red Hill facility.
29:46	The Red Hill Shaft chlorides vary from about 75 to 147 milligrams per liter
29:54	and that seems to vary positively with pumping in that as you increase pumping you go to
30:00	the higher chloride concentrations. So for not getting the chlorides from directly beneath,
30:07	where is it coming from? One possibility is that the—
30:15	we have pref-layering of our lava flows. The different sequences or
30:24	types of lava in those flows has very contrasting hydraulic properties. We have
30:36	clinker zones, which if they're unweathered would have very high hydraulic conductivity.
30:41	But we also have 'a'ā layers which very massive lava,
30:45	very low hydraulic conductivity. So we would have a structured preferential flow path,
30:54	down tip of the lava flows, potentially extending into the transition zone.
30:59	So that would potentially result in groundwater being drawn up to what we've often thought of as
31:08	a skimming shaft at the water table surface. The implications for Red Hill would include
31:17	the capture zone that extends much further downslope than would typically be modeled.
31:24	Also would be much broader. But one of the more critical points would be that this would be much—

31:33	the Red Hill Shaft would be much less efficient at capturing shallow groundwater contamination.
31:43	Finally, nitrate as a anthropogenic tracer, and go quickly over that. In 2006,
31:54	Helton et al. found an inverse relationship between rainfall and leachable nitrate-nitrogen
32:01	in the forest setting of East Maui. We looked to see if that was also applied
32:08	throughout other islands, throughout the state, and found a good correlation—
32:13	inverse correlation between rainfall and nitrate concentration in the wells if you do a
32:22	rainfall weighted average of rainfall along the flow path. So
32:27	again, we looked the at, we modeled the nitrate, and mapped it as a percent exceedance
32:36	of the measured versus the modeled. In the Red Hill region, we find that we have actually some
32:43	depletion, some agreement with the model, but then some zones of significant excess nitrate.
32:53	So it's two very different patterns of nitrate with different flow trajectory implications.
33:00	So what this brings us to is that chloride concentrations observed are inconsistent with the
33:06	mauka-makai flow trajectory, and actually more consistent with the alternative Honolulu-Pearl
33:13	Harbor. Nitrate story is more nuanced, and that is due to potentially biodegradation of
33:21	fuel hydrocarbons, which will reduce the nitrate in the groundwater as the indigenous microbes
33:31	break down the fuel and hydrocarbon contamination. We will continue to work with nitrates and nitrate
33:38	isotopes to refine our interpretation. And at this point, I will turn it over to Don and let him-
33:49	shift the screensharing to him. And he will talk about what additional work we're going to do.
33:57	[Donald Thomas (speaker)]: So, Bob has talked about data that we all
34:04	have, have gathered over the last several years to better understand this system. But as he has said
34:12	many times that there is still a great deal more that we need to do and to learn about this entire
34:21	system before we will be able to accurately estimate risks associated with releases of
34:29	contaminants into the groundwater here. And so we put together a program of planned studies that we
34:38	would like to accomplish to help us answer some of these critical questions. Very briefly, I'll go
34:45	into more detail here momentarily. What we want to do is better to find these major structural
34:51	features: the valley fills, the diatremes, the other large scale structures within the Red
35:00	Hill region that have very substantial effect on groundwater transport, and how contaminants are
35:08	likely to move. We also want to better document and characterize sort of the intermediate scale
35:14	features within the basalt ridges. The pāhoehoe, the 'a'ā, the clinker, and the soil and clay features will

35:23	have significant impacts on how both groundwater moves as well as LNAPL will move through this
35:29	system. We want to document the interaction of fuel with basalt. The fuels are hydrophobic, and
35:39	they will react differently with the basalts than water typically does. And so we intend to develop
35:48	a better understanding of how that interaction will impact how that fuel migrates from
35:55	the vadose zone—from the unsaturated zone, into the water table. We want to characterize
36:02	the natural and pumping-induced flow rates and directions at a variety of scales in this region.
36:09	And with that data, we'd like to populate a 3D geologic model with the site-specific data,
36:18	apply some geostatistical analysis to what we see there geologically
36:23	to develop a really detailed conceptual site model. And then use that conceptual site model
36:30	to drive the development of a new-numerical flow model, both for the LNAPL, for the fuels,
36:37	as well as for groundwater. And use our existing dataset of so-called synoptic data,
36:44	water level data, and tracer data to validate that numerical flow model. So I'll talk in more
36:51	detail now about each of these types of studies and what we hope to do and hope to accomplish.
36:57	First thing we want to do is image the valley fill and saprolite wedges. We know that the
37:03	valley fill and saprolite are much less permeable than the basalts. We would like to—
37:13	they are also heavily altered and they respond to seismic waves quite differently from the basalt
37:21	itself. There's a technique that's been used on O'ahu called ambient surface wave tomography. It
37:28	is a seismic-passive seismic method. It was successfully used in southeast O'ahu
37:37	looking at the the sediment fill and basalt in the Sandy Beach region by Niels Grobbe and his
37:48	colleagues, and was was quite successful at it. The technique employs natural seismic activity, or
37:56	seismic wave activity is generated actually by waves impacting on the shoreline, as well as
38:03	anthropogenic seismic noises that is created by traffic and quarry operations and similar types
38:10	of what we call seismic noise, and allows us to develop a map of seismic velocities
38:19	over a range of depth slices. This is a result of Niels Grobbe's team
38:28	out near Sandy Beach, and each of these images is a horizontal slice
38:36	through the geology of the area, and allowing them to identify the seismic velocity and then infer
38:47	that the zones where the seismic velocities are higher are the zones of more pristine basalts,
38:55	and differentiate those from the lower seismic velocities which are likely sediments.
39:03	We would like to apply this technique here in the North Hālawa Valley and South Hālawa Valley to
39:11	develop a very detailed picture of how deeply incised those valleys were, and how deep the

39:21	alluvium and saprolite is able to penetrate into the water table and affect groundwater flow.
39:30	Again, this idea we have and one of the things that I wanted to mention too is that having wells
39:40	into these features will allow us actually to ground truth this interpretation.
39:47	And there are a number of wells, there will be additional wells drilled in this region,
39:51	that will allow us to really much better characterize both the saprolite and valley fill
39:58	intervals as well as in the vicinity of the diatremes of these late stage volcanics.
40:07	The other technique that we want to apply is additional gravity surveys and try to
40:15	better image the intrusive lavas that are associated with the Salt Lake Tuff Ring Complex.
40:22	Bob has already showed this image indicating that we have higher density material up in—excuse me—
40:34	up in this region, and also extending over here
40:39	and under the Moanalua Valley as well as partially under Red Hill Ridge.
40:47	And our intention is to expand these, the survey area, and increase the density of seismic stations
40:57	so that we can get better resolution. One of the things I wanted to point out
41:02	is that in these gravity anomalies, the solutions are non-unique, there are a number of different
41:14	conceptual models for these intrusive bodies
41:18	that will satisfy the same dataset. By increasing the number of data points,
41:23	we can narrow those down. We will also investigate using this passive seismic
41:31	surveys over the region of these high density features to try to better image those as well.
41:43	The third step in defining these major structural features is to compile all of the existing and new
41:49	well core data. We have a number of wells that have been drilled in this region. This shows an
41:56	array of wells, the ones with the kind of the light blue labels—these are existing wells
42:04	that have been drilled using a technology called continuous coring. And so we have
42:10	actual geologic samples over the entire depth of the wells here that have been drilled.
42:18	We also are in discussion with the Navy on drilling some additional wells in this region
42:25	that will really give us a much more detailed data set that we can compile into
42:38	the models—the geologic models from this region that will give us much better insight into how the
42:48	groundwater flow will interact with these different lava types.
42:54	Now, let me move on. So we want to characterize the intermediate scale features within this area
43:01	as well. And what do I mean by intermediate scale? I'm talking about the individual lava flows This
43:07	is an image taken from a recent USGS publication that gives us kind of a conceptual idea of

43:17	what the lava flow sequence looks like. We have the 'a'ā flow units that can be several meters
43:26	thick and up to 10 and 20 meters wide. And these flow units are typically surrounded by 'a' \bar{a} clinker. And
43:36	within this sequence, we also have pāhoehoe lavas.
43:40	And groundwater flow through these individual features can be quite different.
43:48	So, our intent here is to try to better image these different flow units using electrical
43:56	resistivity tomography (ERT) and audio-magnetotelluric (AMT) surveys. And we will be looking specifically
44:05	at the individual ridges in this area. We should be able to image and distinguish the
44:11	weathered clinker zones from the 'a'ā cores and from the pāhoehoe flow intervals as well.
44:19	The area in which we would conduct these surveys is along Red Hill Ridge. This is a view downward
44:26	on Red Hill Ridge. The tanks themselves are down here. They would make it impossible to apply this
44:33	technique below the tanks, because this is an electrical method and that—the steel tanks would
44:42	disrupt the signal that we would hope to gather there. But further up the ridge,
44:49	we feel like that information will give us considerable detail on the array of
44:56	$p\bar{a}$ hoehoe and 'a' \bar{a} and clinker zones that we have buried within the ridge below the tanks and down
45:04	into the water table. Likewise over here on the Hālawa Ridge just above the quarry operations.
45:17	Another aspect of characterizing these intermediate scale features,
45:20	and really what we're trying to accomplish with this characterization,
45:24	is to identify where flow can occur and try to develop an understanding of what the scale
45:30	of that flow would be. And so, we will conduct a sequence of measurements, directly measuring
45:40	exposed lava flow units and identifying the transmissive features in those flow units.
45:50	We can do that using exposures inside of tunnels. There are a number of tunnels that have have been
45:56	cut into the ridges surrounding Red Hill. And where the interior walls of those tunnels are
46:04	exposed we can document cooling joints, in the 'a'ā flow units, the void spaces
46:11	in the 'a'ā clinker zones. We also have exposed quarry faces. The Hālawa quarry
46:20	has been very generous in allowing us to come in and inspect the faces of the the quarry in
46:28	areas. This work, some of this work has already begun. Dr. Scott Rowland, who is with the faculty
46:34	at the University of Hawai'i, has mapped in this case, these are the clinker zones. We have
46:44	lava flow interfaces here and although you can't see it very well in this image—
46:49	if you look at this image, he's also mapped the cooling joints,

46:53	where fractures have bisected the 'a'ā core units and can—developing a statistically
47:04	significant inventory of the distribution of these fracture units;
47:12	determining what their fracture apertures are, we will be able to model how fuel is able to
47:21	pass through the vadose zone, the unsaturated zone, on its way down to the water table, and
47:29	actually develop some models for that, to be able to broadly understand how fuel does
47:37	interact with these features in the subsurface and work its way down towards the water table.
47:46	And finally, another method that we are going to investigate is—there is a well logging technique
47:53	called borehole televiewer, where we can actually go in and image the exposed walls
48:00	of an open borehole and image not only the— this is a core taken from a borehole. This is a
48:08	borehole televiewer image, not of the core itself, but of the borehole walls.
48:14	And we can image the clinker zones. We can image the fractures and document the frequency of these
48:22	fractures, what their orientation is, and their apertures, and also input that into our model.
48:30	So the next series of studies is to document the fuel and basalt interactions. What we want
48:36	to do is assess the retention rate of fuel by different basalt lithologies. What I'm saying
48:45	here is that when you say pour a gallon of fuel onto the—to a basalt surface or a soil surface,
48:54	that underlying soil, some of it will adsorb and hold on to that fuel. Likewise,
49:01	the basalt will hold on to some of that fuel. And so a spill of a certain size, as Bob mentioned
49:07	earlier in the presentation, may not even make it to the water table. And so what we want
49:13	to do is understand how much fuel is retained in the vadose zone, and how large a fuel release
49:21	would actually make it down to the water table and for this LNAPL plume on top of the water table.
49:31	And this will mostly involve laboratory work and we'll be using weathered and unweathered
49:38	samples of the massive 'a'ā, the 'a'ā clinker, and the pāhoehoe to do the studies,
49:46	and looking at the wet and dry because the the
49:49	level of moisture will also affect the rate of retention of the basalt for the fuel.
49:57	Ultimately, what we hope to do then is assess the rate
50:00	of transport through massive and fractured 'a'ā core lavas and do
50:08	modeling of fracture apertures and fracture frequencies to determine how that fuel is moving.
50:15	And we know that is a very complex — complex process. This is an image
50:20	taken from a study in a hardrock environment elsewhere, but you can see the fuel distribution
50:27	is nowhere near—in the red and blue is nowhere near contiguous. It's a very scattered and
50:34	torturous pathway that that the fuel does follow through these fractured hardrock environments.
50:41	So it will be a combination of laboratory studies as well as modeling.

50:46	In the next set of studies, we'd like to characterize water flow under pumping and
50:51	non-pumping conditions. This is something that, we hope by taking direct measurements of water flow
51:00	in some of the existing wells, they can provide us with at least an initial very site specific
51:08	information on water flow and water flow rates and water flow trajectories that we can then
51:14	use to develop a tracer test, a larger scale tracer test, that will give us a reason-regional
51:22	indication of how groundwater flows. So the first step in that is conducting in well measurements
51:28	of particle tracks, this is a technique where we can drop an instrument into a well,
51:35	either open hole or in the screened interval that allows water to pass through the well laterally.
51:43	And the technique allows us to not only determine the rate of flow, the velocity of
51:51	particles that are imaged in the flow system, we can also determine the direction.
51:59	So this is in the—this is showing data gathered from a specific well
52:07	in the open hole section, and then in a screened well, where there's only a
52:11	short section open to study. And they show very similar results. Those results then,
52:19	are plotted up in what's called a rose diagram. And although we don't expect any individual well
52:28	to tell us what the regional flow direction is, by measuring these flow directions, in a
52:35	broad sequence of wells in this region, we feel that the preponderance of evidence
52:41	will give us some information of what the rate of flow is and the overall direction of flow.
52:53	Also, as part of this work, we want to expand Bob's analysis of the natural tracers
53:01	to include ions, the ion concentrations, such as the chloride, the other ions, the isotopic
53:09	composition of the water and the dissolved ions, that are both from natural products
53:19	as well as anthropogenic contaminants that are already present in the water.
53:24	And again, the idea is that water under urbanized areas has distinctly different
53:32	chemical compositions and isotopic composition than water coming in from more pristine regions.
53:40	And with all of that data, then as guidance, we will plan to design and execute a dye tracer
53:47	study where we would inject the dye tracer into a carefully selected well, and then monitor
53:54	wells that, again, our preponderance of our data suggests is the direction of water flow.
54:02	And finally, one of the things that we have not done yet is try to inventory the
54:09	amount of water that is flowing within this region and is discharging into Pearl Harbor.
54:17	Because that ultimately would be the destination of this mauka-to-makai flow. And this, this would
54:25	be following work that Eric Attias and colleagues did offshore of West Hawai'i. What they were able

54:33	to do is use an electrical geophysical method to image the electrical conductivity below the sea
54:40	floor and identify a layer of freshwater saturated rock as well as an area where
54:49	that, whatever that confining layer was that was responsible for that deeper freshwater,
54:55	allows it to come to the surface. So he was able to actually image the flow of water through
55:03	the ocean bottom up into the overlying saltwater water column.
55:10	And so, we would like to attempt some of these surveys within Pearl
55:15	Harbor. All of these are of course subject to agreement by the Navy to allow us to come in
55:21	and be able to conduct these surveys without interfering with their normal operations.
55:27	One of the techniques that has been mentioned that we have discussed
55:31	is the so-called self-potential method. This was used in that southeast O'ahu study. It did show an
55:39	indication of direction of flow of water in that region. However, this is an electrical method. And
55:49	within the region that we're working, there is a tremendous amount of buried electrical conductors,
55:54	the pipelines, the tanks. And all of these will have an effect on the signal that is
56:01	surveyed using these self-potential surveys. And so although we will attempt it, we don't
56:06	have high expectations that we'll be able to get very reliable data from that exercise.
56:15	The next step in these studies will be to integrate the well log data into physical results.
56:22	And what I mean by this, we want to put this into a 3D
56:29	visualization model. This is an example of what can be done. These are actually
56:40	a visualization of the geology in the areas surrounding the fuel tanks
56:48	within Red Hill. When the fuel tanks were being constructed,
56:53	they had geologists go in and map every single lava flow and describe every single lava flow
57:01	in the walls of the cavity that was excavated prior to the installation of the tanks.
57:09	And so, we could put that into a three dimensional visualization
57:16	and apply appropriate geostatistical methods to extend and infill the intermediate
57:24	scale structures, where we don't have that site-specific data. And this is another example
57:30	where that original dataset was modeled to show the extent of pāhoehoe and 'a'ā and clinker
57:42	units within this system. And what we can do with that model then is to
57:49	make a sort—at-will, various slices through this system and define the different flow units
58:00	and their ability to allow groundwater and LNAPL to flow within this region.
58:11	Ultimately, the goal of this effort though, is to use that
58:16	three dimensional visualization to develop a comprehensive conceptual site model
58:21	based on the most detailed geophysical and ground truth data and statistical modeling that we

58:26	generate. And then that CSM, that conceptual site model, will be the starting point for
58:33	subsequent numerical models. And those numerical models will include an LNAPL transport model,
58:40	a numerical model for modeling groundwater flow. The LNAPL transport model will be
58:48	specific to the vadose, the unsaturated zone, the numerical flow model will apply to groundwater
58:54	flow through this region, and ultimately then, that will form the basis for a contaminant fate
59:00	and transport model. As I mentioned earlier, the intent is that once that model—and we don't
59:07	develop these models in a vacuum—once we develop the models, we then validate those models using
59:15	measured water levels over extended period of time for natural flow conditions as
59:21	well as under pumping conditions. And then with that, we should be able to
59:29	make much better estimates of groundwater flow within this region, compare those against
59:38	also the dye tracer test, and come up with the best possible model we can.
59:43	So, in closing what I am trying to sort of say in summary here is that this is a depiction
59:52	of the flow model that was developed by the contractor for the Navy. It shows these very
60:02	linear so-called particle tracks from beneath the tanks down towards Red Hill Shaft. This is
60:12	looking at these data in map view from above. And this is looking at a cross section of that
60:20	flow. So a very narrow flow path being followed by particles in the water as they migrate down
60:30	towards Red Hill Shaft. We want to transition that to one that recognizes the complexities
60:38	of fluid flow through this extraordinarily complex geologic system.
60:45	And will more accurately portray what happens when a contaminant is released within this region,
60:56	and how it would spread and travel both horizontally and vertically.
61:01	And finally, I would add a postscript. And this is in anticipation of a question that
61:09	I've actually been asked, "Well, if the tanks are going to be shut down, why are you
61:14	going to do all of this work?" And my answer to that question is what we don't know about
61:21	Red Hill hydrogeology, we also don't know about most of Oʻahu's hydrogeology. We hope that the
61:29	work that we're going to do here will serve as a template and a stimulus to expand our efforts
61:38	to better understand how contaminants do move within the basalt formations here on O'ahu.
61:46	And what we can do to minimize the risks to our really vital drinking water resources on
61:54	the island. With that, I thank you and we can begin to take questions. Thank you very much.
62:02	Transcribed by https://otter.ai