CP-1999-05
Soil: the environmental source of Escherichia coli and Enterococci in Guam’s streams
Fujioka, R., C. Sian-Denton, M. Borja, J. Castro, and K. Morphew
We have previously documented that faecal indicator bacteria (Escherichia coli, faecal coliform, enterococci) recommended by the U.S. Environmental Protection Agency (USEPA) to establish recreational water quality standards are naturally found in high concentrations in the surface and subsurface of soils in Hawaii. Rain, the source of all streams in Hawaii, washes the soil sources of faecal bacteria into all the streams of Hawaii, at concentrations which consistently exceed the USEPA recreational water quality standards. The objective of this study was to test the hypothesis that faecal bacteria are able to establish themselves in the soil environments of tropical islands by conducting the same study in Guam, a tropical pacific island with warmer temperatures and higher humidity than Hawaii. The same methods and study design used in Hawaii was used in Guam. The results of the study conducted in Guam revealed that all streams contain consistently high concentrations of faecal coliform, E. coli, and enterococci/100 ml which exceeded the old USEPA recreational water quality standard of 200 faecal coliform/100 ml as well as the new water quality standards of 126 E. coli /100 ml or 33 enterococci/100 ml. These same faecal indicator bacteria were recovered in high concentrations in surface and subsurface (18-36 cm depth) soil samples in Guam. Limited coastal water analysis showed that most coastal marine waters contain low concentrations of faecal bacteria but coastal water impacted by stream run-off showed elevated levels of faecal bacteria. The results of this study support the hypothesis that environmental conditions in the tropical areas of the world can support the growth and establishment of populations of faecal bacteria in the soil. Thus, soil becomes an environmental, no-faecal source of faecal indicator bacteria. These results indicate that USEPA water quality standards may not be directly applicable to tropical island environments.