Introduction

Fate and Transport of Selected Estrogen Compounds in Hawaii Soils: Effect of Soil Type and Maropores

Fate and Transport of Selected Estrogen Compounds in Hawaii Soils: Effect of Soil Type and Maropores

CP-2015-02
Fate and Transport of Selected Estrogen Compounds in Hawaii Soils: Effect of Soil Type and Maropores

Matteo D’Alessio, Dharni Vasudevan, Joesph Lichwa, Sanjay K. Mohanty, Chittaranjan Ray

The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60–90 cm and 210–240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.