Introduction

Estimating hydraulic proerties of volcanic aquifers using constant-rate and variable-rate aquifer tests

Estimating hydraulic proerties of volcanic aquifers using constant-rate and variable-rate aquifer tests

CP-2007-03
Estimating hydraulic proerties of volcanic aquifers using constant-rate and variable-rate aquifer tests

Rotzoll, Kolja, Aly I. El-Kadi, and Stephen B. Gingerich

In recent years the ground-water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground-water resources, an improved understanding of ground-water flow systems is needed. At present, large-scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant-rate and variable-rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constantrate tests, although not widely used on Maui, offer reasonable estimates. Step-drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant-rate tests. A numerical model validates the suitability of analytical solutions for step-drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log-normally distributed and that for dike-free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/ d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/ d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands.