Microbial Population Dynamics in the Phytoremediation of Petroleum Hydrocarbons in Hawaii

Francoise M. Robert
Department of Microbiology
University of Hawaii
Former Hickam Air Force Base Tank Farm

Collaborative Greenhouse Project

Wen-Hao Sun and C.S. Tang – Plant and Hydrocarbon Analyses
Francoise M. Robert – Microbial Aspect
PETROLEUM HYDROCARBON PHYTOREMEDIATION

DEGRADATION OF HYDROCARBONS BY MICROORGANISMS STIMULATED IN THE ROOT ZONE
RHIZOSPHERE:

Layer of soil influenced by root exudates and sloughed-off root cells

(< 2-3 mm)
Possible Plant-root Effects on Hydrocarbon Degraders

1) Population increase by root exudates & dead plant cells

2) Enzyme induction by analogs, e.g. phenolics, waxes etc.

3) Enhanced bioavailability of PHC by biosurfactants
POSSIBLE PLANT-ROOT EFFECTS ON HYDROCARBON DEGRADATION

• Cometabolism

Microorganism #1

Root exudates \rightarrow CO2 + H2O
(for growth)

Cyclohexane \rightarrow Cyclohexanol
(Not for growth) (Not for growth)
Main Screening Experiment
Microbial Aspect of Main Screening Experiment in the Greenhouse

Objectives

• Evaluate plant and contaminant influence on populations of hydrocarbon degraders

• Determine the effect of microbial population size on plant hydrocarbon reduction
Main Screening Experiment
Microbial Enumerations

- Rhizosphere of 6 plants and unplanted soil
- Contaminant (0 & 10,000 mg diesel/kg soil)
Various Types of Diesel Constituents

Various Diesel-degrading Microbes
Microbial Enumerations

- Total bacteria
 - R2A plate counts
- Phenanthrene degraders
 - Phenanthrene-overlay (mineral medium)
- Diesel degraders
 - Most-probable-number
- Pristane degraders
 - Most-probable-number
RESULTS
DIESEL CONTAMINANT DEPLETION
AT 98 DAYS (10,000 MG /KG SOIL SPIKE)

Day 0

Day 98

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Day 0 TPH-D (mg/kg)</th>
<th>Day 98 TPH-D (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No plant, d 0</td>
<td>10000</td>
<td>9000</td>
</tr>
<tr>
<td>Nerium oleander</td>
<td>8000</td>
<td>7000</td>
</tr>
<tr>
<td>Beach naupaka</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td>False sandalwood</td>
<td>4000</td>
<td>3000</td>
</tr>
<tr>
<td>Common ironwood</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>No plant, d 98</td>
<td>10000</td>
<td>9000</td>
</tr>
<tr>
<td>Kou</td>
<td>8000</td>
<td>7000</td>
</tr>
<tr>
<td>Milo</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td>Kiawe</td>
<td>4000</td>
<td>3000</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Major Questions

• Which source of carbon (diesel or plant) results in the highest microbial populations?

• Is there a correlation between rhizosphere population size and hydrocarbon depletion?
Populations of Total Bacteria

![Bar graph showing the populations of total bacteria over time for different conditions. The x-axis represents different treatments labeled S, K, KO, M, N, B, and F, and the y-axis represents the log of the number of microorganisms per gram of soil. Arrows indicate Day 0 and Day 98.](image-url)
Phenanthrene-Degrading Bacteria

![Graph showing the log of the number of microorganisms (g of soil) over time for different treatments. The x-axis represents different treatments labeled S, K, KO, M, N, B, and F. The y-axis represents the log of the number of microorganisms per gram of soil. The graph includes data from Day 0 and Day 98. The legend indicates the presence of a control and a die condition.](image-url)
Pristane Degraders

Day 0

Day 98

Log of No. of microorganisms / g of soil
Diesel Fuel Degraders

Control
Die

Day 0
Day 98
HYDROCARBON-DEGRADING POPULATION SIZE IS NOT A GOOD INDICATOR OF PLANT PROMOTION OF DIESEL DEGRADATION
Microbial Populations

Total Bacteria

Phenanthrene & Pristane Degraders

Diesel Degraders
Diverse Group of Diesel Degraders

Milo Exudates

Diesel

Sandalwood Exudates
Phytoremediation Benefit Model
Acknowledgments

• CH2M HILL
 – Marisa Toma
• C.S. Tang
 – Joey Lo
• W.H. Sun
 – Renee Harada
• Ryan Kody Jones
 – Mike Thomas
• C. Ray
 – Jennifer Morita
• C. Ray
 – Kei Kitakata
Major Conclusions

- Increased number of hydrocarbon-degraders by diesel alone and all uncontaminated plants.
- Large populations of hydrocarbon degraders in contaminated rhizospheres is not a reliable indicator of phytoremediation success.
- Three different types of carbon preferences were observed among the soil microorganisms.
- Qualitative differences in root exudates potentially account for differences in plant performance in hydrocarbon-level reduction.
Soil Sampling for Microbial Enumerations

• Rhizosphere
 – Roots with layer of soil < 1 mm
 – Roots shaken in mineral medium for 1 hour
 – Serial dilutions in mineral medium

• Bulk Soil
 – Decimal dilutions in mineral medium after 1-hr shaking
Rhizosphere Effect (R/S)

\[R/S = \frac{\# \text{ microorganisms in rhizosphere}}{\# \text{ microorganisms in bulk soil}} \]

At the field site:

- Kiawe, \(R/S = 28 \) for total bacteria
- Buffelgrass, \(R/S = 60 \) for total bacteria
Greenhouse Simulation of Phytoremediation at the Field Site in Trisector-Planters

Sandy Loam
Silt
Sandy Loam
Microbial Populations at the Field Site

![Bar graph showing microbial populations at the field site.](image_url)
The Experiment

• Roots were grown in lower section with the contaminant for 200 days
• Contaminant was 6 individual diesel constituents
 – 3 n-alkanes (hexadecane, eicosane, docosane) (500 mg/kg each)
 – 2 PAHs (phenanthrene, pyrene) (200 mg/kg each)
 – 1 branched alkane (pristane) (200 mg/kg)
• Microbial populations enumerated for kou, false sandalwood, and unplanted soil
Hydrocarbon Reduction
Plant Influence in the Presence of Contaminant

![Graph showing log # microorganisms/g soil for Kou, FSW, and Soil samples with labels for total bacteria, phen degradation, and hexadecane degradation.]
Correlation Between Population Size and Hydrocarbon Degradation

- **Kou**
 - Reduced Phen (>69%) and Hex (27.5%)

- **FSW**
 - Reduced Phen (>69%); hex (0%)

- **Soil**
 - Reduced Phen (<31%); hex (0%)
AERATED TRISECTOR-PLANTERS
(ALL TREATMENTS ARE CONTAMINATED)

<table>
<thead>
<tr>
<th></th>
<th>TOTAL BACTERIA</th>
<th>PHE – DEG. BACTERIA</th>
<th>HEXADECANE DEGRADERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE SANDAL WOOD</td>
<td>5</td>
<td>23</td>
<td>955</td>
</tr>
<tr>
<td>KOU</td>
<td>7</td>
<td>38</td>
<td>7413</td>
</tr>
</tbody>
</table>
RHIZOSPHERE EFFECT (R/S) IN MAIN SCREENING EXPERIMENT (AVERAGE OF 6 PLANTS)

<table>
<thead>
<tr>
<th></th>
<th>TOTAL BACTERIA</th>
<th>PHE. - DEG. BACTERIA</th>
<th>DIESEL- DEG.</th>
<th>PRISTANE- DEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITHOUT DIESEL</td>
<td>34</td>
<td>46</td>
<td>257</td>
<td>19</td>
</tr>
<tr>
<td>WITH DIESEL</td>
<td>5</td>
<td>Ca. 1</td>
<td>Ca. 1</td>
<td>Ca. 1</td>
</tr>
</tbody>
</table>